linear convergence meaning in English
线性收敛性
Examples
- A class of global convergent memory gradient methods and its linear convergence rate
一类全局收敛的记忆梯度法及其线性收敛性 - The convergence of the refined non - interior continuation method for ncps is analyzed , the same global linear convergence as chen - xiu ' s is obtained
得到了与chen - xiu同样的全局线性收敛,推广了chen - xiu的局部超线性收敛到局部二次收敛。 - Without the strict feasibility of the initial points and iteration points , the algorithm is shown to possess both polynomial - time complexity and q - linear convergence
该算法不要求初始点及迭代点的可行性且具有q -线性收敛速度和多项式时间复杂性。 - Third , by means of smale , s point estimates theorem , the existence and the convergence theorem of broyden , s iteration is given , the method has less calculation and the speed of super linear convergence for solving the nonlinear equations with nondifferential terms under the point estimates or weak condition
第三,本文利用smale提出的点估计理论,给出了在点估计和弱条件下,用计算量小、具有超线性收敛速度的broyden方法来求解带不可微项的非线性方程,给出了存在性收敛性定理及相应的证明。 - Using the conic function model local approximation , w . cdavidon ( 1980 ) proposed a class of iterative algorithms with modified matrix combining function value , furthermore under the theory d . c . sorensen has used local quadratic approximation method , then applying collinear scaling idea improving on the above algorithm and generalizing it , getting a class of collinear scaling algorithm , unifying former quasi - newton . in the paper , using local quadratic approximation method , the first , constructing the new collinear scaling gene , getting a class of the new collinear scaling algorithm with briefness and numerical stability , . , we discusses some properties of the algorithm and its local linear convergence , q - superlinear convergence and the whole convergence ; secondly we have made numerical experimentation and numerical analysis ; the last , we have done much discussion for collinear scaling idea and given the several new collinear scaling algorithm
本文的工作就是基于局部二次逼近原理,首先通过构造新的共线调比因子,得到了一类新的更简洁,数值稳定性更好的共线调比算法,进而我们给出了本共线调比算法的局部收敛性,全局收敛性以及算法q -超线性速度的理论证明;其次,用经典的无约束优化五大考核函数就本共线调比算法进行了数值试验和数值分析;最后,就局部二次逼近思想,进行共线调比算法思想进行更广泛的讨论,给出了几个新共线调比算法。